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In the present paper, a one-temperature model of transport properties in chemically nonequilibrium neutral
gas-mixture flows with electronic excitation is developed. The closed set of governing equations for the
macroscopic parameters taking into account electronic degrees of freedom of both molecules and atoms is
derived using the generalized Chapman-Enskog method. The transport algorithms for the calculation of the
thermal-conductivity, diffusion, and viscosity coefficients are proposed. The developed theoretical model is
applied for the calculation of the transport coefficients in the electronically excited N /N2 mixture. The specific
heats and transport coefficients are calculated in the temperature range 50–50 000 K. Two sets of data for the
collision integrals are applied for the calculations. An important contribution of the excited electronic states to
the heat transfer is shown. The Prandtl number of atomic species is found to be substantially nonconstant.
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I. INTRODUCTION

The modeling of nonequilibrium kinetics and transport
properties in high-temperature gases is needed for the devel-
opment of the aerospace industry. When a space vehicle en-
ters into the Earth atmosphere, it undergoes very strong heat-
ing, up to several thousands and tens of thousands Kelvins.
Under such conditions, along with the excitation of the rota-
tional and vibrational degrees of freedom and chemical reac-
tions, the electronic excitation and ionization take place.

The transport properties of nonequilibrium flows are
widely studied in the literature, starting from the famous
book of Chapman and Cowling �1�, who assumed gas mix-
tures to be composed of structureless particles. In Refs. �2,3�,
the transport theory of gas mixtures under conditions of
weak deviations from equilibrium was further developed. In-
ternal degrees of freedom were introduced to the kinetic
transport theory in Refs. �4–8� and other works in 50–60ies.
During the last decades, the main attention was focused on
the transport properties of strongly nonequilibrium flows �see
Refs. �9–13� for strong vibrational nonequilibrium and Refs.
�13–16� for chemically nonequilibrium flows� as well as on
the transport phenomena in ionized gases �see Refs.
�3,17–24��. However, the impact of the electronic degrees of
freedom of atoms and molecules on the transport coefficients
is not sufficiently understood up to the present time. We can-
not say that the electronic excitation was completely ne-
glected in the recent studies. Indeed, during the last years, a
chemically equilibrium atomic hydrogen plasma with elec-
tronically excited states is actively studied by the scientific
group of Bari �see Refs. �25–29��. In these references, the
effect of electronic degrees of freedom of atoms is found to
be important; the molecular species are not considered in
these works. On the other hand, some aspects of the elec-
tronic excitation of molecules are briefly discussed in Refs.
�30,31�. In these papers, the contribution of the electronic
states to the heat transfer is found to be negligible. Therefore,
the role of the electronic excitation in the transport processes
is still not completely clear.

The objective of the present paper is to study the transport
coefficients in a mixture of electronically excited molecules
and atoms. We consider chemically nonequilibrium neutral
gas-mixture flows taking into account the electronic degrees
of freedom of both atoms and molecules. Using the kinetic
theory methods proposed earlier in Refs. �11,13,14�, we de-
velop a one-temperature model of a reacting gas-mixture
flow, estimate the influence of the number of the excited
electronic levels on the internal specific heats, and calculate
the transport coefficients in the N /N2 mixture with electronic
excitation. In this study, we do not consider ionization since
our objective is to understand the pure effect of electronic
excitation on the transport properties. Ionization will be
taken into account in the future work.

II. MACROSCOPIC PARAMETERS AND GOVERNING
EQUATIONS

We consider a nonequilibrium flow assuming that the rate
of the internal energy relaxation substantially exceeds that of
chemical reactions

�tr � �rot � �vibr � �el � �react � � . �1�

Here �tr, �rot, �vibr, �el, and �react are the characteristic times
for translational, rotational, vibrational and electronic relax-
ations, and chemical reactions; � is the mean time of the
variation in gas-dynamic parameters. Under this relation, on
the time scale of the order �, chemical reactions can be con-
sidered on the basis of the maintaining Boltzmann distribu-
tions over the velocity and internal energy levels.

Under the condition �1�, the kinetic equations for the dis-
tribution functions fcl�r ,u , t� in the absence of external
forces have the following form:

� fcl

�t
+ uc · �fcl =

1

�
Jcl

rap + Jcl
sl ,

� =
�int

�react
�

�int

�
� 1, �2�

where c is the chemical species, l is a set of the quantum
numbers: for molecules l= �nij�, for atoms l=n �n, i, j are,
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respectively, the electronic, vibrational, and rotational lev-
els�, r, u, and t are the coordinates, particle velocities, and
time; � is the small parameter, �int is the characteristic time
for the relaxation of all internal degrees of freedom, and Jcl

rap,
Jcl

sl are the integral operators of rapid and slow processes

Jcl
rap = Jcl

tr + Jcl
rot + Jcl

vibr + Jcl
el, Jcl

sl = Jcl
react. �3�

An important problem is to determine the macroscopic
flow parameters, for which a closed system of equations of
the nonequilibrium hydrodynamics can be derived. Accord-
ing to the generalized Chapman-Enskog method for nonequi-
librium gas flows with rapid and slow processes �see Refs.
�13,14��, the macroscopic parameters are introduced by av-
eraging the invariants of the most frequent collisions. In our
case, the set of collision invariants includes the mass, mo-
mentum, total energy, and additional invariants, which are
conserved only in the rapid process, namely, ac are any quan-
tities, arbitrarily depending on the chemical species c and
independent of the velocity and internal state,

�cl
�1,2,3� = mcucx,mcucy,mcucz,

�cl
�4� =

mcuc
2

2
+ 	l

c + 	c,

�cl
�
+4� = ac, 
 = 1, . . . ,L . �4�

Here mc is the mass of a particle of c species, 	l
c is the

internal energy of molecules and atoms of the species c, 	c is
the energy of formation, and L is number of chemical spe-
cies.

The internal energy of molecules and atoms is modeled as
follows:

	l
c = �	nij

mol = 	el�n� + 	vibr�n,i� + 	rot�n,i, j�
	n

at = 	el�n� ,
	 �5�

where 	el, 	vibr, and 	rot are, respectively, the internal ener-
gies of the electronic, vibrational, and rotational degrees of
freedom. For the calculation of the internal energy of mol-
ecules, we use the spectroscopic data from �32�; the elec-
tronic states of atoms are provided in Ref. �33�. The elec-
tronic energy is taken from the tables of the spectroscopic
data, the vibrational energy for each electronic state is calcu-
lated on the basis of the Morse potential for anharmonic
oscillators, and the rotational energy is simulated taking into
account its dependence on the electronic and vibrational lev-
els �33�.

The system of collision invariants �4� provides the follow-
ing set of the macroscopic parameters: the number densities
of species nc�r , t�, the gas velocity v�r , t�, and the total en-
ergy per unit mass u�r , t� �or, which is essentially the same,
the gas temperature T�r , t��.

Governing equations for the macroscopic parameters are
obtained in the following form:

dnc

dt
+ nc � · v + � · �ncVc� = Rc

react, c = 1, . . . ,L , �6�

�
dv

dt
+ � · P = 0, �7�

�
du

dt
+ � · q + P:�v = 0, �8�

here Vc is the diffusion velocity, Rc
react is the production term

due to chemical reactions, � is the mixture density, P is the
pressure tensor, and q is the heat flux.

The set of governing Eqs. �6�–�8� is formally similar to
that given in Refs. �13,16� for thermally weak nonequilib-
rium and chemically strong nonequilibrium flows. However,
in the present study, the internal energy per unit mass in-
cludes those for the rotational, vibrational, and electronic
degrees of freedom.

III. ZERO-ORDER APPROACH

In the zero-order approximation of the modified
Chapman-Enskog method, the distribution functions are ob-
tained in the form,

fcl
�0� = 
 mc

2�kT
�3/2 ncscl

Zc
int�T�

exp
−
mccc

2

2kT
−

	l
c

kT
� , �9�

where k is the Boltzmann constant, scl is the statistical weight
for the internal state l, cc is the peculiar velocity, and Zc

int�T�
is the equilibrium internal partition function,

Zc
int�T� = �

l

scl exp
−
	l

c

kT
� .

The distribution functions �Eq. �9�� represent the local
equilibrium Maxwell-Boltzmann distributions of molecules
and atoms over the velocity and internal energy and nonequi-
librium distribution over chemical species. A substantial dif-
ference from the models developed earlier is that for atoms,
we obtain not only the Maxwell velocity distribution but also
the Boltzmann distribution over the electronic energy levels.

The Chapman-Enskog method makes it possible to ex-
press, in each approximation, the transport terms as functions
of the main macroscopic parameters and their spatial deriva-
tives. In the zero-order approximation, the pressure tensor
takes a diagonal form P= pI �p is the hydrostatic pressure, I
is the unit tensor�, whereas the remaining transport terms are
equal to zero: Vc=q=0. The production term Rc

react�0� is
specified by the zero-order reaction-rate coefficients kf ,r

�0�, kb,r
�0�,

which are related through the law of mass action.

IV. SPECIFIC HEATS

Thermodynamic properties of molecules and atoms are
required for the calculation of the transport coefficients and
numerical solution of the governing equations. In this sec-
tion, we consider in detail the specific heats. The specific
heat at constant volume is given by the expression

cV = 
 �u

�T
�

V

= 
 �Etr

�T
�

V

+ 
 �Eint

�T
�

V

= ctr + cint, �10�

where Etr, Eint are the translational and internal energies per
unit mass; ctr and cint are the components of the specific heat
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corresponding to the translational and internal degrees of
freedom. Since the mixture composition in the above expres-
sion is assumed to be fixed, the specific heats introduced by
Eq. �10� can be treated as “frozen.” In the case of strongly
nonequilibrium chemical reactions, the frozen specific heats
are used for the calculation of the transport coefficients.

In order to estimate the contribution of electronic levels to
the specific heats, we calculate the internal energy per unit
mass using two ways:

�a� Taking into account all internal modes, namely, the
electronic, rotational, and vibrational degrees of freedom

Eint,c�T� =
1

mcZc
int�T��l

scl	l
c exp
−

	l
c

kT
�, l = �nij� .

�11�

�b� Neglecting electronic excitation, i.e., taking into ac-
count only the rotational and vibrational levels of the ground
electronic state

Erv,c�T� =
1

mcZc
rv�T��ij scij	ij

c exp
−
	ij

c

kT
� . �12�

In the last formula,

Zrv,c�T� = �
ij

scij exp
−
	ij

c

kT
� .

Thus, for the model �a�, the specific heats of the internal
degrees of freedom of molecules and atoms have the follow-
ing form:

cint,mol = 
 �Eint

�T
�

V

, cint,at = 
 �Eel

�T
�

V

. �13�

For the model �b�, we obtain

cint,mol = crv,mol = 
 �Erv

�T
�

V

, cint,at = 0. �14�

On the basis of the formulas �10�, �13�, and �14�, the
specific heats of N2 and N were calculated in the temperature
range 50–50 000 K. Figure 1 presents the nondimensional
specific heats cV,c as functions of T. We can see that the
specific heat for atoms cV,N reaches rather high values, ex-
ceeding substantially that for molecules in the interval
T=15 000–30 000 K. Thus, the common assumption that
cV,at=ctr,at is violated, which can affect essentially the accu-
racy of the solution of the governing equations. The total
specific heat of nitrogen molecules cV,N2

=ctr,N2
+cint,N2

taking into account the electronic, rotational, and vibrational
excitations exceeds significantly the specific heat
cV,N2

=ctr,N2
+crv,N2

calculated neglecting electronic states in
the range T=9000–42 000 K. Then, with the temperature
rise, the specific heat cV,N2

taking into account all the internal
degrees of freedom becomes slightly smaller than cV,N2

in-
cluding only the rotational and vibrational modes.

This last effect may look surprising since the specific heat
is basically considered as a sum of separate contributions of
various energy modes: rotational, vibrational, and electronic.
However, in our case all kinds of energy are strongly

coupled. The vibrational energy depends on the electronic
state, whereas the rotational energy depends on both elec-
tronic and vibrational levels. Therefore, the total internal spe-
cific heat cannot be represented as a sum of independent
terms corresponding to various energy modes. Moreover, in
order to understand this effect, let us consider the different
contributions to the specific energy. Figure 2 presents the
specific translational, internal, and rovibrational energies of
the ground electronic state of N2 �Etr,N2

, Eint,N2
, and Erv,N2

,
respectively� as functions of temperature. Up to
T9000 K, the contribution of the electronic states to the
internal energy of molecules is rather weak. Then the rapid
excitation of the electronic states starts, and the specific in-
ternal energy increases sharply up to T40 000 K. This re-
gion corresponds to the high values of the internal specific
heat, and the location of its maximum at T17 000 K ob-
viously coincides with the point of inflexion of the internal
energy. Further, at T40 000 K, the rate of increasing of
the internal energy drops sharply and so do the specific heat.
The rovibrational specific energy Erv,N2

increases almost lin-
early in the region 5000–20 000 K, which provides the val-
ues of crv,N2

close to constant. Then the rate of increasing of
Erv,N2

becomes lower and, consequently, the corresponding

0 10000 20000 30000 40000 50000
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FIG. 1. The nondimensional specific heats cV,c as functions of T.
Curves 1: ctr,N2

=ctr,N, 2: ctr,N2
+crv,N2

, 3: ctr,N2
+cint,N2

, and 4:
ctr,N+cint,N.
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FIG. 2. The energy per unit mass E, MJ/kg as a function of T.
Curves 1: Etr,N2

, 2: Erv,N2
, and 3: Eint,N2

.
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specific heat decreases. In the temperature range about
50 000 K, the rate of increasing of the total internal energy
Eint,N2

is lower than that of the rovibrational energy Erv,N2
.

Therefore, cint,N2
becomes smaller than crv,N2

. Thus, the fact
that cint,N2

�crv,N2
is not contradictory.

Let us discuss now the number of electronic levels, which
contribute to the atomic internal specific heat. It is known
that for atoms, the internal partition functions diverge due to
the high values of the statistical weight. Therefore, some
cut-off criterion should be chosen in order to obtain reliable
values of the partition functions and specific heats. In the
present study, we apply the cut-off criterion proposed in Ref.
�34� and efficiently used in Ref. �33� for the calculation of
the thermodynamic properties of many species of practical
interest. This cut-off criterion is obtained introducing the pa-
rameter �Ei, which characterizes the lowering of the ioniza-
tion potential as a result of the presence of other components.
The parameter �Ei depends on the temperature and number
densities of charged particles. In Ref. �33�, this parameter
was set to 250, 500, and 1000 cm−1. For most of our calcu-
lations, we set �Ei=500 cm−1.

Figure 3 presents the internal specific heat of
nitrogen atoms calculated for �Ei=500 cm−1 �a� and
�Ei=250 cm−1 �b�, taking into account different numbers of
the excited electronic levels. We can see that for
�Ei=500 cm−1, taking into account 300 excited levels pro-
vides a good accuracy: the specific heat calculated using 600
levels coincides with that obtained for 300 levels. For
�Ei=250 cm−1, 300 levels is not sufficient, and we need
about 480 electronic levels to obtain a satisfactory accuracy.
Note that cint,N calculated for �Ei=250 cm−1 is greater than
that for �Ei=500 cm−1. We also compared our results with
those given in Ref. �33�, and a very close agreement was
obtained within the whole temperature range: the discrep-
ancy does not exceed 1%.

V. FIRST-ORDER APPROACH

In the first-order approximation of the modified
Chapman-Enskog method, the distribution function is ob-
tained in the following form:

fcl
�1� = fcl

�0�
−
1

n
Acl · � ln T −

1

n
�

d

Dcl
d · dd −

1

n
Bcl:�v

−
1

n
Fcl � · v −

1

n
Gcl� . �15�

The first-order correction depends on the gradients of all
macroscopic parameters and contains the unknown functions
Acl, Dcl, Bcl, Fcl, and Gcl, which are found from the linear
integral equations similar to those given in Ref. �13�.

Using the procedure of the modified Chapman-Enskog
method, we derive the expressions for the pressure tensor,
diffusion velocity, and energy flux,

P = �p − prel�I − 2�S − � � · vI , �16�

Vc = − �
d

Dcddc − DTc � ln T , �17�

q = − 
� � T − p�
c

DTc
dc + �

c

�chcVc. �18�

Here S is the deformation rate tensor, dc is the diffusive
driving force, and hc is the specific enthalpy of species c.

In Eqs. �16�–�18�, �, � are the shear and bulk viscosity
coefficients, prel is the relaxation pressure, Dcd, DTc are the
diffusion and thermal diffusion coefficients, and 
�=
tr
+
int is the partial thermal-conductivity coefficient, includ-
ing contributions of the translational and internal degrees of
freedom. Note that the normal mean stress in this case in-
cludes the terms �� ·v and prel associated, respectively, to
the flow compressibility and to the contribution of nonequi-
librium chemical reactions.

The rate coefficients of chemical reactions in the first-
order approximation include the correction terms kf ,r

�1�, kb,r
�1�

specified by the scalar functions Fcl and Gcl and depending
on the temperature, mixture composition, and on the velocity
divergence. These first-order corrections are related to the
flow compressibility and deviations from the Maxwell-
Boltzmann distributions; they are similar to those discussed
in Ref. �35� for the case of a one-temperature flow without
electronic excitation. The perturbed rate coefficients kf ,r

�1�, kb,r
�1�

were also discussed before in Refs. �13–15,36� for various
flow conditions. Note that due to the first-order terms in the
reaction rates, the law of mass action is violated in the vis-
cous flow approximation. Moreover, the cross effects be-
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∆Ei = 250 cm-1

n = 20
n = 100
n = 200
n = 300
n =400
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(a)

FIG. 3. The nondimensional specific heat cint,N as a function of
T for �a� �Ei=500 cm−1 and �b� �Ei=250 cm−1.
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tween the normal mean stress and the chemical reaction rate
can be demonstrated for the present case, similarly to the
conditions considered in Ref. �35�.

VI. TRANSPORT COEFFICIENTS

In order to calculate the transport coefficients, we make
the following steps:

�1� The unknown functions are expanded into the series of
the Sonine and Waldmann-Trübenbacher polynomials; the
trial functions for the polynomials are introduced according
to the right-hand sides of the integral equations for the first-
order correction to the distribution function,

Acl = −
mccc

2kT
�
rp

ac,rpS3/2
�r� 
mccc

2

2kT
�Pl

�p�
 	l
c

kT
� , �19�

Dcl
d =

mccc

2kT
�

r

dc,r
d S3/2

�r� 
mccc
2

2kT
� , �20�

Bcl =
mc

2kT

cccc −

1

3
cc

2I��
r

bc,rS5/2
�r� 
mccc

2

2kT
� , �21�

Fcl = �
rp

fc,rpS1/2
�r� 
mccc

2

2kT
�Pl

�p�
 	l
c

kT
� , �22�

Gcl = �
rp

gc,rpS1/2
�r� 
mccc

2

2kT
�Pl

�p�
 	l
c

kT
� . �23�

Here S�
�r� are the Sonine polynomials in the reduced peculiar

velocity, Pl
�p� are the Waldmann-Trübenbacher polynomials

in the internal energy, and ac,rp, dc,r
d , bc,r, fc,rp, and gc,rp are

the expansion coefficients.
Note that for atomic species, the functions Acl, Fcl, and

Gcl are usually expanded into the series of the Sonine poly-
nomials only. In the present case, we use the double polyno-
mial systems for atomic species since they possess the inter-
nal �electronic� energy.

�2� The transport coefficients are expressed in terms of the
expansion coefficients,


� = �
c

5

4
k

nc

n
ac,10 + �

c

mc

2

nc

n
cint,cac,01, �24�

Dcd =
1

2n
dc,0

d , �25�

DTc = −
1

2n
ac,00, �26�

� =
kT

2 �
c

nc

n
bc,0, �27�

� = − kT�
c

nc

n
fc,10, �28�

prel = kT�
c

nc

n
gc,10. �29�

�3� The integral equations are reduced to the transport
linear systems of algebraic equations involving the bracket
integrals as coefficients. For example, the system for the ex-
pansion coefficients specifying the thermal-conductivity and
thermal diffusion coefficients is obtained in the form

�
d

�
r�p�

�rr�pp�
cd ad,r�p� =

15kT

2

nc

n
�r1�p0 + 3mcT

nc

n
cint,c�r0�p1

and should be solved together with the additional constraint
providing the uniqueness of the solution

�
c

�c

�
ac,00 = 0.

Here the coefficients �rr�pp�
cd are the bracket integrals contain-

ing the cross sections of the rapid processes, i.e., all elastic
and inelastic collisions, which do not result in chemical re-
actions.

�4� The bracket integrals are simplified applying the com-
monly used assumptions proposed by Mason and Monchick
�see Refs. �3,7,8��. Finally, they are expressed in terms of the
collision integrals �cd

�l,r� and the relaxation times for the in-
ternal energy. The �cd

�l,r� integrals are calculated for the par-
ticular models of intermolecular interaction potentials. In the
present study, we use the repulsive Born-Meyer potential and
the approximate formulas for the collision integrals obtained
in Refs. �37,38�.

�5� The transport coefficients are then calculated numeri-
cally as the solutions of the transport linear systems using the
Gauss method. For a binary mixture, this method provides a
satisfactory efficiency. For complex multicomponent mix-
tures, the iterative algorithms proposed in Ref. �16� are more
appropriate.

VII. RESULTS AND DISCUSSIONS

The transport coefficients were calculated for the N /N2
mixture in the temperature range 50–50 000 K using the
approach developed above.

The impact of the electronic excitation on the coefficients
of diffusion, thermal diffusion, and shear viscosity is found
to be negligible. In contrast to this conclusion, the influence
of the electronic states on the thermal-conductivity coeffi-
cients is significant.

The coefficients of thermal conductivity 
tr,c, 
int,c, 
rv,c
of the components of the N /N2 mixture are given in Fig. 4 as
functions of T. The excitation of the electronic degrees of
freedom influences substantially the internal thermal conduc-
tivity. Thus, neglecting the electronic states results in the
significant underestimation of the molecular internal thermal
conductivity: for T about 20 000 K, the coefficient 
int,N2

is
almost twice larger than the coefficient 
rv,N2

calculated ne-
glecting the electronic states. The contribution of the elec-
tronic states to the thermal conductivity of atomic species in
the temperature range 12 000–30 000 K is even higher; for
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T20 000 K, the coefficient of internal thermal conductiv-
ity for atoms 
int,N is six to seven times larger than the cor-
responding translational thermal-conductivity coefficient

tr,N.

Figure 5 presents the total coefficient of thermal conduc-
tivity 
� as well as that for the internal degrees of freedom

int calculated in the mixture N /N2 as functions of the N2
molar fraction for T=10 000–50 000 K. We can see that the
thermal-conductivity coefficients take the maximum values
for the lowest concentrations of molecules �except the only
case of 
int at T=50 000 K, for which the values of the
internal specific heats become rather low�. Thus, we can con-
clude that the most significant contribution to the thermal-
conductivity coefficients is given by atoms, and, in the tem-
perature range 15 000–35 000 K, the main role belongs to
the atomic electronic states. With the rise of the N2 concen-
tration in a mixture, the thermal-conductivity coefficients de-
crease noticeably.

Although the contribution of atomic electronic states to
the thermal conductivity is found to be maximum, the impact
of the molecular electronic states for T=10 000–40 000 K
is not negligible as well. This can be seen from Table I,
where the contribution of different degrees of freedom to the
total thermal conductivity of atoms and molecules is given.
We see that for the temperatures under 5000 K, the internal
thermal conductivity of molecules is completely determined
by the rotational-vibrational modes of the ground electronic
state. Then the contribution of the electronically excited
states to the molecular internal thermal conductivity becomes
essential �it gives about 10% for T=10 000 K and 40% for
T=20 000 K�. With the further temperature rise, for
T20 000 K, the role of the electronic levels decreases
becoming negligible for T40 000 K. Note that for
T40 000 K, the internal thermal-conductivity coefficient
of molecules calculated taking into account only the ground
electronic state 
rv,N2

becomes larger than the coefficient

int,N2

obtained including the electronically excited states. It
is explained by the similar behavior of the internal specific
heat discussed above. For atoms, the contribution of the elec-
tronic states is negligible for low temperatures T�2000 K;
at T20 000 K, it achieves the maximum of about 86% and
then decreases with the temperature.

The results obtained above for atomic species agree quali-
tatively with those presented in Refs. �25–29� for a hydrogen
plasma. On the other hand, in Ref. �30�, the role of the elec-
tronic excitation in the heat transfer near the surface of a
body re-entering the Earth’s atmosphere with a high velocity
�up to 13 km/s� was found to be rather weak. This is ex-
plained by the fact that although the temperature behind the
shock wave is very high �about 50 000 K�, the temperature
near the surface drops sharply and becomes lower than
10 000 K. Therefore, in this case, the wall heat flux is not
affected by the electronic excitation. However, for a different
flow situation, the temperature near the wall may occur
higher �for instance, for the Jupiter re-entry conditions�, and
the contribution of the electronic states to the heat flux
should be much more important. Moreover, for the case of a
thermally nonequilibrium gas, when the populations of the
highly excited internal states occur larger, the influence of
the electronic modes on the heat transfer is expected to be
significant.

The above calculations were carried out using the set of
data on the collision integrals proposed in Ref. �38�. These
approximate formulas provide a rather good accuracy of the
transport coefficients in the moderate temperature range.
However, the limits of the validity of the collision integrals
given in Ref. �38� are not discussed by the authors. In the
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FIG. 4. The thermal-conductivity coefficients 
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rv,c of atomic N and molecular N2 species as functions of T.
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next figures, we compare the transport coefficients calculated
using the data from Ref. �38� with those obtained with the
collision integrals proposed by Capitelli et al. in Ref. �37�.
The approximate expressions given in the latter paper are
valid up to 100 000 K. Figure 6 presents the thermal-
conductivity coefficients calculated using the two data sets.
We can see that the coefficients obtained for the collision
integrals from Ref. �38� are larger than those calculated using
the data from Ref. �37�. While for the molecular species the
maximum discrepancy does not exceed 15%, for atoms it
occurs within 30–40 %. Thus, the maximum discrepancy for
different coefficients varies as follows: for 
int,N2

, 2.5% at
20 000 K; for 
tr,N2

, 14% at 50 000 K; for 
N2
� , 13% at

50 000 K; for 
int,N, 33% at 20 450 K; for 
tr,N, 37% at
50 000 K; and for 
N� , 30.5% at 20 450 K. For the thermal
conductivity of the translational degrees of freedom, the dif-
ference increases with the temperature, whereas for that of
the internal modes, the maximum difference is achieved at
T20 000 K. We can conclude that the correct choice of the
model for the collision integrals is of great importance for
the accurate calculation of the transport properties in a high-
temperature gas.

In Fig. 7, the Prandtl number

Pr =
cp�


�
�30�

for different species is presented as a function of T. It is seen
that the two models for the collision integrals provide the
opposite behavior of the Prandtl number for atoms and mol-
ecules. Thus, the Prandtl number for atoms calculated using
the data from Ref. �37� is larger than 0.67 and achieves the
maximum at T20 000 K. In contrast, the atomic Prandtl
number obtained on the basis of the data from Ref. �38� is
less than 0.67 and has the minimum at the similar tempera-
ture. For molecules, the discrepancy is less but still there is
the difference. In any case, the Prandtl number is far from

being constant, especially for atoms. This conclusion is of
importance for the computational fluid dynamics, where the
Prandtl number for atoms is commonly assumed to be con-
stant Pr=0.67.

TABLE I. Contribution of the translational and internal modes
to the total thermal conductivity of species �%�.

T
�K�

N N2


tr,N

�%�

int,N

�%�

tr,N2
�%�


rv,N2
�%�


int,N2
�%�

500 100 0 72.6 27.4 27.4

1000 100 0 66.2 33.8 33.8

5000 87.2 12.8 57.4 42.5 42.6

10000 64.4 35.6 50.9 39.6 49.1

15000 28.7 71.3 36.0 28.3 64.0

20000 13.8 86.2 34.8 25.6 65.2

25000 24.2 75.8 42.8 27.6 57.2

30000 46.8 53.2 53.3 29.3 46.7

35000 68.5 31.5 63.0 29.0 37.0

40000 82.1 17.9 70.8 27.3 29.2

45000 89.5 10.5 76.7 24.9 23.3

50000 93.5 6.5 81.1 22.4 18.9
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FIG. 6. The thermal-conductivity coefficients 
tr,c, 
int,c, and 
�
of molecules �a� N2 and atoms �b� N calculated as functions of T
using the collision integrals from Refs. �37,38�.
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VIII. GENERAL CONSIDERATIONS

In the present study, we calculate the transport coefficients
using the arbitrarily fixed mixture composition. This ap-
proach can be used only for chemically nonequilibrium con-
ditions. In the case of thermal-chemical equilibrium, the spe-
cies number densities cannot be chosen arbitrarily since they
are found from the equations of chemical equilibrium. In an
inviscid flow, the equilibrium chemical composition is found
from the set of algebraic equations, which express the con-
servation of mass and of the number of elements. In this
case, the equilibrium mixture composition �EMC� is speci-
fied only by the pressure, temperature, and molar fractions of
elements. In the majority of studies on chemically equilib-
rium flows, the EMC calculated on the basis of the equations
of chemical equilibrium is used in both inviscid and viscous
gas approximations. Such a technique is commonly used also
for the calculation of the transport coefficients in chemically
equilibrium flows �see Refs. �25–30,39,40� and many oth-
ers�. For instance, Butler and Brokaw �39,40� introduced the
reactive thermal-conductivity coefficient on the basis of the
diffusion coefficients and the EMC specified only by the
pressure and temperature. The generalization of the Butler
and Brokaw formulation for ionized mixtures is suggested in
Ref. �41�.

For the calculation of the transport terms, this method is
correct since the transport coefficients involve the linearized
collision operator and therefore depend on the zero-order
species number densities. On the other hand, such an ap-
proach is not self-consistent for the calculation of the mix-
ture composition in a viscous flow. Indeed, by definition,

nc = �
l
� fclduc. �31�

In the case of chemical nonequilibrium �under the condi-
tion �1��, the species number density nc is one of the main
macroscopic parameters associated to the collision invariants
of rapid processes �4�. Therefore, according to the Chapman-
Enskog formalism, it is totally specified by the zero-order
distribution function,

nc = nc
�0� = �

l
� fcl

�0�duc. �32�

In the case of thermal-chemical equilibrium, the set of
collision invariants is different �see, for instance, Refs.
�14,42��, and the corresponding set of macroscopic param-
eters includes the number densities of elements n� instead of
nc; the number of elements is less than the number of spe-
cies. The normalizing conditions of the Chapman-Enskog
method are applicable in this case to n� rather than to nc,

n� = n�
�0� = �

cl

��c� fcl
�0�d3uc, �33�

where ��c is the number of elements � in the component c.
Now, if we calculate the number densities of species nc, in
the zero-order approximation we obtain

nc
�0� = �

l
� fcl

�0�duc. �34�

The number densities nc
�0�=nc

�0��p ,T ,n� /n� are equal to those
found using the equations of chemical equilibrium.

In the first-order �viscous� approximation,

nc = �
l
� fcl

�0��1 + �cl
�1��duc, �35�

�cl
�1� is the first-order correction to the distribution function,

which, in the case of thermal-chemical equilibrium, is found
in the form �see Ref. �14� and also the paper by Ern and
Giovangigli �42��

�cl
�1� = −

1

n
Acl · � ln T −

1

n
�
�

Dcl
� · � ln n� −

1

n
Bcl:�v

−
1

n
Fcl � · v . �36�

The functions Acl, Dcl
� , Bcl, and Fcl are found from the ap-

propriate linear integral equations.
If we substitute Eq. �36� into Eq. �35�, all the vector and

tensor terms vanish as integrals of odd functions over a sym-
metric interval. The only term making contribution to nc in
the first-order approximation is the scalar term associated to
� ·v. Therefore,

nc = nc
�0� −

� · v

n
�

l
� fcl

�0�Fclduc, �37�

and the species number densities �as well as their molar and
mass fractions� in a viscous gas flow depend on the velocity
divergence. The same function Fcl specifies the bulk viscos-
ity coefficient in a weakly thermally chemically nonequilib-
rium flow.

Thus, we can conclude that calculating the species molar
fractions from the equations of chemical equilibrium in a
viscous gas is correct only in incompressible flows or in a
nonmoving gas �with � ·v=0�. Moreover, in a viscous flow,
evaluating the specific enthalpy on the basis of nc

�0� is not
rigorous from the point of view of the kinetic theory. We
suggest first to estimate the first-order corrections to the
equilibrium mixture composition and then to conclude
whether they are negligible or not.

IX. CONCLUSION

A closed description of a one-temperature mixture flow
taking into account electronic excitation is proposed on the
basis of the kinetic theory methods. The macroscopic equa-
tions and transport terms are derived, and the algorithms for
the calculation of the transport coefficients are developed.
The transport coefficients of the N /N2 mixture are calculated
in the temperature range 50–50 000 K. The influence of the
electronic excitation on the specific heats and transport coef-
ficients is estimated. In the temperature range
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10 000–40 000 K, the contribution of the electronic modes
to the thermal conductivity of species is found to be essen-
tial. The model of the collision integrals is very important for
the correct prediction of the transport properties. The Prandtl
number of atomic species is substantially nonconstant. The
limits of the validity of the commonly used technique for the
calculation of the transport properties in thermally and
chemically equilibrium gas mixtures are shown. As the next

step of this study, we plan to include the ionized species into
consideration.
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